比特币 交易模型
与以太坊的账户模型不同,比特币是没有余额概念的,使用的是 UTXO 模型。所以在比特币网络中,存储比特币的是交易输出,准确点说就是未使用过的交易输出。
UTXO
UTXO 是 Unspent Transaction Outputs 的缩写(Transaction 可简写为 TX),即未使用过的交易输出。比特币节点会追踪 UTXO 集合,从而确定哪些代币未被花费,以及哪些人可以花费它们。最初的比特币是通过铸币交易
创造的,它是用来奖励矿工的一种特殊交易,因为是凭空创造的,所以它没有输入的。
新的 UTXO 是通过花费现有 UTXO 创建的,UTXO 包含了接收地址和金额。每个比特币交易都由输入和输出组成。输入花费已有 UTXO,输出则创建新的 UTXO,UTXO 只要被用一次,就不存在“未花费”了,以后就不会再被引用,这样就解决双花(双重支付)问题。当我们要使用一个 UTXO 时,需要对 UTXO 进行解锁(一般是用私钥对 UTXO 进行签名),虽然 UTXO 是公开的,但是如果没有私钥去解锁,则不能花费 UTXO。
交易结构
交易是比特币的核心数据结构,包括区块在内的数据结构都是在为交易服务。
- 交易主要由未花费的输入和输出组成,输出总金额不能大于输入的总金额,多余的部分为交易矿工费
有三种类型交易
- 铸币交易(Generation TX),有额外的 Coinbase 字段,矿工可以随意填写一些信息,因为是挖矿所得,所以这种交易类型没有输入,输出数量就是矿工所得,地址是矿工的地址。
- 普通交易(Pubkey Hash TX),转账交易,一个或多个输入,一个或两个输出,第一个输出称为支付,第二个输出称为找零
- 脚本交易(Script Hash TX),一般为多签脚本,为普通交易升级版本,可以生成灵活的锁定脚本,然后使用特定的解锁脚本去花费比特币
字段表
数据项 | 大小 (Byte) | 数据类型 | 描述 |
---|---|---|---|
nVersion | 4 | int32_t | 交易版本 |
vin | 不定 | CTxIn 列表 | 交易输入 |
vout | 不定 | CTxOut 列表 | 交易输出 |
nLockTime | 4 | uint32_t | 交易锁定时间 |
交易输入 CTxIn
数据项 | 大小 (Byte) | 数据类型 | 描述 |
---|---|---|---|
prevout | 不定 | COutPoint | 上一个交易的输出,由交易哈希和索引值确定 |
scriptSig | 不定 | char[] | 解锁脚本 |
nSequence | 4 | uint32_t | 序列号,可用于相对时间锁定 |
交易输出 CTxOut
数据项 | 大小 (Byte) | 数据类型 | 描述 |
---|---|---|---|
nValue | 8 | int64_t | 交易输出金额,单位为 Satoshis |
scriptPubKey | 不定 | char[] | 锁定脚本,定义花费须满足的条件 |
创币交易 CoinbaseTransaction
每一个区块内包含的第一条交易为 CoinbaseTransaction,它作为对挖出该区块的矿工的比特币奖励交易。
- 没有交易输入
- 交易哈希为 0
- 输出的索引值固定,为 0xffffffff
- BIP34 规定增加一个 4 字节的 height 的字段,这个参数是必须的
源码参考
代码路径:https://github.com/bitcoin/bitcoin/blob/master/src/primitives/transaction.h
COutPut
/** An outpoint - a combination of a transaction hash and an index n into its vout
*
** 一个交易哈希值与输出下标的集合
*/
class COutPoint
{
public:
uint256 hash; //交易哈西
uint32_t n; //对应序列号
COutPoint(): n((uint32_t) -1) { }
COutPoint(const uint256& hashIn, uint32_t nIn): hash(hashIn), n(nIn) { }
ADD_SERIALIZE_METHODS; //用来序列化数据结构,方便存储和传输
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(hash);
READWRITE(n);
}
void SetNull() { hash.SetNull(); n = (uint32_t) -1; }
bool IsNull() const { return (hash.IsNull() && n == (uint32_t) -1); }
//小于号<重载函数
friend bool operator<(const COutPoint& a, const COutPoint& b)
{
int cmp = a.hash.Compare(b.hash);
return cmp < 0 || (cmp == 0 && a.n < b.n);
}
//==重载函数
friend bool operator==(const COutPoint& a, const COutPoint& b)
{
return (a.hash == b.hash && a.n == b.n);
}
//!=重载函数
friend bool operator!=(const COutPoint& a, const COutPoint& b)
{
return !(a == b);
}
std::string ToString() const;
};
CTxIn
/** An input of a transaction. It contains the location of the previous
* transaction's output that it claims and a signature that matches the
* output's public key.
*
**交易的输入,包括当前输入所对应上一笔交易的输出位置,
*并且还包括上一笔输出所需要的签名脚本
*/
class CTxIn
{
public:
COutPoint prevout; //上一笔交易输出位置
CScript scriptSig; //解锁脚本
uint32_t nSequence; /**序列号,可用于交易的锁定
nSequence字段的设计初心是想让交易能在在内存中修改,可惜后面从未运用过
对于具有nLocktime或CHECKLOCKTIMEVERIFY的交易,
nSequence值必须设置为小于2^32,以使时间锁定器有效。通常设置为2^32-1
由于BIP-68的激活,新的共识规则适用于任何包含nSequence值小于2^31的输入的交易(bit 1<<31 is not set)。
以编程方式,这意味着如果没有设置最高有效(bit 1<<31),它是一个表示“相对锁定时间”的标志。
否则(bit 1<<31set),nSequence值被保留用于其他用途,
例如启用CHECKLOCKTIMEVERIFY,nLocktime,Opt-In-Replace-By-Fee以及其他未来的新产品。
一笔输入交易,当输入脚本中的nSequence值小于2^31时,就是相对时间锁定的输入交易。
这种交易只有到了相对锁定时间后才生效。例如,
具有30个区块的nSequence相对时间锁的一个输入的交易
只有在从输入中引用的UTXO开始的时间起至少有30个块时才有效。
由于nSequence是每个输入字段,因此交易可能包含任何数量的时间锁定输入,
所有这些都必须具有足够的时间以使交易有效。
*/
CScriptWitness scriptWitness; //! Only serialized through CTransaction
/* Setting nSequence to this value for every input in a transaction
* disables nLockTime.
*
* 规则1:如果一笔交易中所有的SEQUENCE_FINAL都被赋值了相应的nSequence,那么nLockTime就会被禁用
*/
static const uint32_t SEQUENCE_FINAL = 0xffffffff;
/* Below flags apply in the context of BIP 68*/
/* If this flag set, CTxIn::nSequence is NOT interpreted as a
* relative lock-time.
*
* 规则2:如果设置了该值,nSequence不被用于相对时间锁定。规则1失效
*/
static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31);
/* If CTxIn::nSequence encodes a relative lock-time and this flag
* is set, the relative lock-time has units of 512 seconds,
* otherwise it specifies blocks with a granularity of 1.
*
* 规则3:如果规则1有效并且设置了此变量,那么相对锁定时间单位为512秒,否则锁定时间就为1个区块
*/
static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22);
/* If CTxIn::nSequence encodes a relative lock-time, this mask is
* applied to extract that lock-time from the sequence field.
*
* 规则4:如果nSequence用于相对时间锁,即规则1有效,那么这个变量就用来从nSequence计算对应的锁定时间
*/
static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff;
/* In order to use the same number of bits to encode roughly the
* same wall-clock duration, and because blocks are naturally
* limited to occur every 600s on average, the minimum granularity
* for time-based relative lock-time is fixed at 512 seconds.
* Converting from CTxIn::nSequence to seconds is performed by
* multiplying by 512 = 2^9, or equivalently shifting up by
* 9 bits.
*
* 相对时间锁粒度
* 为了使用相同的位数来粗略地编码相同的挂钟时间,
* 因为区块的产生限制于每600s产生一个,
* 相对时间锁定的最小单位为512是,512 = 2^9
* 所以相对时间锁定的时间转化为相当于当前值左移9位
*/
static const int SEQUENCE_LOCKTIME_GRANULARITY = 9;
CTxIn()
{
nSequence = SEQUENCE_FINAL;
}
explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(prevout);
READWRITE(scriptSig);
READWRITE(nSequence);
}
friend bool operator==(const CTxIn& a, const CTxIn& b)
{
return (a.prevout == b.prevout &&
a.scriptSig == b.scriptSig &&
a.nSequence == b.nSequence);
}
friend bool operator!=(const CTxIn& a, const CTxIn& b)
{
return !(a == b);
}
std::string ToString() const;
};
CTxOut
/** An output of a transaction. It contains the public key that the next input
* must be able to sign with to claim it.
*
**交易输出,包含输出金额和锁定脚本
*/
class CTxOut
{
public:
CAmount nValue; //输出金额
CScript scriptPubKey; //锁定脚本
CTxOut()
{
SetNull();
}
CTxOut(const CAmount& nValueIn, CScript scriptPubKeyIn);
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(nValue);
READWRITE(scriptPubKey);
}
void SetNull()
{
nValue = -1;
scriptPubKey.clear();
}
bool IsNull() const
{
return (nValue == -1);
}
friend bool operator==(const CTxOut& a, const CTxOut& b)
{
return (a.nValue == b.nValue &&
a.scriptPubKey == b.scriptPubKey);
}
friend bool operator!=(const CTxOut& a, const CTxOut& b)
{
return !(a == b);
}
std::string ToString() const;
};
CTransaction
/** The basic transaction that is broadcasted on the network and contained in
* blocks. A transaction can contain multiple inputs and outputs.
*
*
** 基本的交易,就是那些在网络中广播并被最终打包到区块中的数据结构。
* 一个交易可以包含多个交易输入和输出
*/
class CTransaction
{
public:
// Default transaction version.
static const int32_t CURRENT_VERSION=2; //默认交易版本
// Changing the default transaction version requires a two step process: first
// adapting relay policy by bumping MAX_STANDARD_VERSION, and then later date
// bumping the default CURRENT_VERSION at which point both CURRENT_VERSION and
// MAX_STANDARD_VERSION will be equal.
/** 更改默认交易版本需要两个步骤:
* 1.首先通过碰撞MAX_STANDARD_VERSION来调整中继策略,
* 2.然后在稍后的日期碰撞默认的CURRENT_VERSION
*
* 最终MAX_STANDARD_VERSION和CURRENT_VERSION会一致
*/
static const int32_t MAX_STANDARD_VERSION=2;
// The local variables are made const to prevent unintended modification
// without updating the cached hash value. However, CTransaction is not
// actually immutable; deserialization and assignment are implemented,
// and bypass the constness. This is safe, as they update the entire
// strcture, including the hash.
/** 下面这些变量都被定义为常量类型,从而避免无意识的修改了交易而没有更新缓存的hash值;
* 然而CTransaction不是可变的
* 反序列化和分配被执行的时候会绕过常量
* 这才是安全的,因为更新整个结构包括哈希值
*/
const std::vector<CTxIn> vin; //交易输入
const std::vector<CTxOut> vout; //交易输出
const int32_t nVersion; //版本
const uint32_t nLockTime; //锁定时间
private:
/** Memory only. */
const uint256 hash;
uint256 ComputeHash() const;
public:
/** Construct a CTransaction that qualifies as IsNull() */
CTransaction();
/** Convert a CMutableTransaction into a CTransaction. */
/**可变交易转换为交易*/
CTransaction(const CMutableTransaction &tx);
CTransaction(CMutableTransaction &&tx);
template <typename Stream>
inline void Serialize(Stream& s) const {
SerializeTransaction(*this, s);
}
/** This deserializing constructor is provided instead of an Unserialize method.
* Unserialize is not possible, since it would require overwriting const fields.
*
** 提供此反序列化构造函数而不是Unserialize方法。
* 反序列化是不可能的,因为它需要覆盖const字段
*/
template <typename Stream>
CTransaction(deserialize_type, Stream& s) : CTransaction(CMutableTransaction(deserialize, s)) {}
bool IsNull() const {
return vin.empty() && vout.empty();
}
const uint256& GetHash() const {
return hash;
}
// Compute a hash that includes both transaction and witness data
uint256 GetWitnessHash() const; //计算包含交易和witness数据的散列
// Return sum of txouts.
CAmount GetValueOut() const; //返回交易出书金额总和
// GetValueIn() is a method on CCoinsViewCache, because
// inputs must be known to compute value in.
/**
* Get the total transaction size in bytes, including witness data.
* "Total Size" defined in BIP141 and BIP144.
* @return Total transaction size in bytes
*/
unsigned int GetTotalSize() const; // 返回交易大小
bool IsCoinBase() const //判断是否是创币交易
{
return (vin.size() == 1 && vin[0].prevout.IsNull());
}
friend bool operator==(const CTransaction& a, const CTransaction& b)
{
return a.hash == b.hash;
}
friend bool operator!=(const CTransaction& a, const CTransaction& b)
{
return a.hash != b.hash;
}
std::string ToString() const;
bool HasWitness() const
{
for (size_t i = 0; i < vin.size(); i++) {
if (!vin[i].scriptWitness.IsNull()) {
return true;
}
}
return false;
}
};